An Efficient Methodology for Fracture Characterization and Prediction of DP980 Steels for Crash Application

              2018-10-17 09:09:00
              LUQIMENG
              Original
              2444

              Steel Marketing Development:  Hesham Ezzat, Dave Anderson

              ArcelorMittal: Steve Lynes, Tim Lim

              AK Steel: Kavesary Raghavan

              Nucor: Dean Kanelos, Andy Thompson

              Honda Research of Americas: Jim Dykeman, Skye Malcolm

              University of Waterloo:

              PI’s: Cliff Butcher and Mike Worswick

              Research Team :

              Research Team :  Jose Imbert-Boyd

              Armin Abedini

              Kenneth Cheong

              Sante DiCecco

              Sam Kim

              Amir Zhumagulov

              Taamjeed Rahmaan

              Kaab Omer


              1. Each Supplier Submits One DP980 to SMDI Sample Bank


              Materials can generally be described as DP with fine, uniform microstructure.

              Grades represent recent optimization in processing / chemistry (but are not Gen 3 level).

              Performance of these grades is consistent with or above current commercial products.

              Better local formability relative to other DP980’s.


              1. Characterize properties of various Dual Phase 980 grades selected by Steel Marketing Development Institute (Blind Study).

              2. Investigate optimized fracture testing methodology for Advanced High Strength Steel Industrial Friendly and Efficient Methods Required  (GDIS 2017)

              3. Perform experimental axial and bend crush experiments and assess fracture performance (GDIS 2017)

              4. Numerical characterization for CAE application to dynamic tests  (GDIS 2018) 

              5. Efficient methods needed to transition from coupons to crash simulations.


              Limited hardening data available in tensile tests.

              Inverse FE modeling used to identify hardening at large strains for fracture.

              Hardening data becomes a function of numerical model assumptions...

              UW developed simple method to use tensile & shear test data to obtain hardening to large strain levels.

              DP980 data to 60% strain!

              Not related to FE mode!


              ? Conflicting limits provided by different specimen types if thinning correction not applied

              Min. of 4 Tests can describe the fracture locus


              Four Relatively Simple Tests:

              1. Mini-shear

              2. Hole expansion (reamed)

              3. V-Bend

              4. Biaxial/Bulge


              Four tests can be used to generate physically- - meaningful fracture loci

              Not the product of a simulation exercise – Real material performance can be assessed

              ? Relatively comparable fracture loci

              ? Mat 2 had the lowest hardening rate,highest hole expansion and v-bend

              ? How do we use this for CAE?


              Tensile-Based Characterization Tests are Employed

              X – Strong localization

              X – Through-Thickness Strain Gradients

              X – Fractures at mid-thickness

              No DIC strain measurement

              X – Requires 3-D solid elements

              X – Requires fine mesh: ~ 0.10 mm

              X – Non-linear 3-D stress state develops


              Solid element models are great for academic research but less so for industry.

              CAE models for forming & crash use plane stress shell elements from 0.5 – 7.0 mm


              Extracting the plane stress fracture locus from a calibrated 3-D solid model

              works in theory…in practice the element mechanics are different


              Relatively simple tests that most labs can perform and are comfortable with
              Since sheet is thin, the logic is that these samples are plane stress….
              Deformation rapidly localizes, violating plane stress assumption but creating a desired change in the stress state



              Shell models cannot resolve strong local thinning and localization  ? O O verestimate the stress response, underestimates strain
              Methods exist to add  damage- - induced softening  to improve the shell solutions. Not a damage issue but element type.
              Can create problems for cases when shells are appropriate


              Shell element models for sheet metal forming and structural component models can be very accurate
              Use of  Nakazima dome tests for CAE characterization is more consistent with the end applications



              Mechanics of shear deformation creates a Plane Stress-Plane Strain loading condition
              Shell elements provide an accurate description



              Regularization factor depends upon:

              1. Coupon geometry
              2. Element type: some geometries are poorly described by shells
              3. Deformation mode: Bending mode is not well described by large elements relative to stretching mode
              4. Stress State: Uniaxial tension is different than biaxial tension

              Regularization atones for any experimental and modelling sins
              Issues of modelling taste Different fracture methodologies can lead to similar
              results in component tests after each is regularized…





              Have developed an industrially-focused methodology for efficient fracture
              characterization

              The results are promising but much work remains:
              ? Application to sheet metal forming with severe non-proportional loading
              ? Application to sheet metal forming through to crash of an AHSS component
              ? Spot weld failure and potential un-zipping of weld groups
              ? Improve physics of damage model
              ? Need some physics to help guide regularization



              Write a Comment
              Nine minus Nine =
              Comment will be posted after it is reviewed.
              QR Code
              99久久久久国产视频,国产免费变态视频网站。,无毒中文字幕无码高清,久久九九aⅴ免费精品